A Unified Proof for the Convergence of Jacobi and Gauss-Seidel Methods
نویسنده
چکیده
We present a new unified proof for the convergence of both the Jacobi and the Gauss–Seidel methods for solving systems of linear equations under the criterion of either (a) strict diagonal dominance of the matrix, or (b) diagonal dominance and irreducibility of the matrix. These results are well known. The proof for criterion (a) makes use of Geršgorin’s theorem, while the proof for criterion (b) uses Taussky’s theorem that extends Geršgorin’s work. Hence the topic is interesting for teaching purposes.
منابع مشابه
Generalized iterative methods for solving double saddle point problem
In this paper, we develop some stationary iterative schemes in block forms for solving double saddle point problem. To this end, we first generalize the Jacobi iterative method and study its convergence under certain condition. Moreover, using a relaxation parameter, the weighted version of the Jacobi method together with its convergence analysis are considered. Furthermore, we extend a method...
متن کاملConvergence of a semi-analytical method on the fuzzy linear systems
In this paper, we apply the homotopy analysis method (HAM) for solving fuzzy linear systems and present the necessary and sufficient conditions for the convergence of series solution obtained via the HAM. Also, we present a new criterion for choosing a proper value of convergence-control parameter $hbar$ when the HAM is applied to linear system of equations. Comparisons are made between the ...
متن کاملOn a Multivariate Eigenvalue Problem: Ii. Global Solutions and the Gauss-seidel Method
Optimizing correlation between sets of variables is an important task in many areas of applications. The stationary points where the optimal correlation occurs are exactly the solutions to the multivariate eigenvalue problem (MEP). For decades, the Horst algorithm which later was recognized as an aggregated Jacobi-type power method has been regarded as an effective numerical scheme for tackling...
متن کاملNumerical Solutions of Nonlinear Parabolic Problems by Monotone Jacobi and Gauss–seidel Methods
This paper is concerned with solving nonlinear monotone difference schemes of the parabolic type. The monotone Jacobi and monotone Gauss– Seidel methods are constructed. Convergence rates of the methods are compared and estimated. The proposed methods are applied to solving nonlinear singularly perturbed parabolic problems. Uniform convergence of the monotone methods is proved. Numerical experi...
متن کاملSolving Linear Equations by Classical Jacobi-SR Based Hybrid Evolutionary Algorithm with Uniform Adaptation Technique
Solving a set of simultaneous linear equations is probably the most important topic in numerical methods. For solving linear equations, iterative methods are preferred over the direct methods specially when the coefficient matrix is sparse. The rate of convergence of iteration method is increased by using Successive Relaxation (SR) technique. But SR technique is very much sensitive to relaxatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM Review
دوره 37 شماره
صفحات -
تاریخ انتشار 1995